SocialEngine Demo by SocialEngineAddOns Science - Love the way it is!

Article Information

  • Posted By : Katrina Charley
  • Posted On : Oct 24, 2017
  • Views : 309
  • Category : Nature
  • Description : A meteorite is a chunk of rock or iron usually from a meteoroid or asteroid which pass through Earth's atmosphere and survives impact with the ground. Most meteorites originate from larger asteroid bodies residing in the asteroid belt between Mars and Jupiter. Collisions and gravitational interactions send these pieces of asteroids into the inner solar system where the Earth travels. Our planet collides with thousands of small pieces of this material everyday. Some of these are the sporadic brighter shooting stars and fireballs that can be seen any night. Several larger pieces are believed to collide with the Earth everyday. This is the type of event that produces meteorites that may later be found on the ground.

Profile Information

  • Inspired By Scientific Facts

Overview

  • Meteor vs Meteorite

    The luminous event seen in the sky is a meteor. A very bright meteor is called a fireball and may actually break up and create meteorites but the light in the sky is called a meteor.

    Meteor showers, or meteorite showers as they are sometimes called happen each year on the same date and are the result of dust from comets. They do not produce meteorites that make it to the ground. These meteor showers are created by tiny bits of material from dust size to the size of a grain of wheat. They burn up almost completely high in the atmosphere dozens of miles above the Earth's surface.


    Types of Meteorites

    There are three basic types of meteorites, the irons, stony, and the stony-irons. Each of these basic families has subgroups.

    • Iron Meteorites

      The iron group are nearly solid nickel iron metal. Because of the strength of the metal some of the largest individual meteorites recovered are iron. Also many of the craters were formed by iron meteorites because the asteroids survived without breaking up all the way to the ground. Irons are attracted to a magnet strongly, they look like real metal when a spot is ground off their surface. They show a pattern when etched by chemicals because of the different nickel iron minerals composing them.

    • Stony Meteorites

      The stone meteorites as their name states are made almost completely of rocky material. Stone meteorites are the most common. Dozens of subgroups are contained in this family. The simplest breakdown of the stony group is, Chondrites, Achondrites, and the Planetary meteorites which are also achondrites but have unique origins.

      • Chondrite Meteorites

        Chondrites are rocks from space that contain small spherical structures called chondrules. These can be thought of as droplets of melted rock which cooled in microgravity into tiny spheres. The chondrules clumped up and through accretion formed into larger masses, finally becoming asteroid size bodies from which broken off chunks have made it to Earth. All meteorites are made of the same elements that are found on Earth. No new elements have ever been found butut new minerals have been found because the processes of rock creation in space are quite different from those on Earth. The elements are able to combine to form some minerals not found in terrestrial rocks. However, most of the minerals in meteorites are those that make up terrestrial rocks as well. Most chondrite meteorites have nickel iron metal in them. The metal can be as little as a few percent to as much as twenty-five percent or more. The tiny chondrules of chondrite meteorites are held together by finer grain particles that form a matrix. Heat from various sources has lithified the chondrules and particles into rock, and heat can also alter the meteorite's character over time.

      • Achondrite Meteorites

        Achondrites are stone meteorites that do not have chondrules. Either the rocks were heated until they completely melted and recrystallized leaving no trace of the chondrite structure or formed as rocks on larger bodies with sufficient size to squeeze and melt the rocks. This is what occurs at depths in the Earth creating our igneous rocks. The achondrites like the chondrites can have iron metal in them. The achondrite subgroups of the Howardites, Eucrites, and Diogenites are thought to have come from the large asteroid Vesta.

      • Planetary Achondrites

        The planetary achondrites are meteorites that have come from the Moon and Mars. The lunar meteorites were recognized because of their similarity to the rock returned to Earth by the Apollo astronauts. The Martian meteorites have preserved in the rock small amounts of gas that matches only the atmosphere of Mars which we have tested with probes. Someday we may find in among the meteorites we find ones from the other rocky worlds of the inner solar system, we may even identify meteorites that are pieces of the Earth blasted off our world during impacts long ago. These would likely be the hardest to identify since only their fusion crust or being witnessed falling would distinguish them from normal Earth rock outside a laboratory.

    • Stony Irons Meteorites

      Stony-irons are meteorites that are made of a nearly 50/50 mix of rock and metal. The two subgroups are the Pallasites that contain olivine crystals as the rock component, and the Mesosiderites which contain various silicate minerals as the rock portion. In both of these the rock portion is completely surrounded by the metal portion. In other words the metal is not in veins or isolated chunks but as the matrix enclosing the mineral half of the mass. The stony-iron family is the rarest of the three main groups and among them are some of the most beautiful meteorites known.